
Xuan Guo

Dynamic Binary Translator for

RISC-V

Computer Science Tripos – Part II

Peterhouse

May 14, 2018

1

2

Proforma

Name: Xuan Guo

College: Peterhouse

Project Title: Dynamic Binary Translator for RISC-V

Examination: Computer Science Tripos – Part II, June 2018

Word Count: 11394

Project Originator: Xuan Guo

Supervisor: Dr Timothy Jones

Original Aims of the Project

RISC-V is an open and modular ISA. It is a recent innovation, so for the ecosystem to

grow, software running on RISC-V ISA has to be developed or ported from other ISAs.

Therefore, there exists a need for a fast RISC-V emulator that can run on commodity

AMD64 hardware. This project aims to develop an emulator that is capable of running

unmodified RISC-V Linux binaries directly on an AMD64 Linux system, and it shall be

utilising dynamic binary translation techniques to achieve better performance than simple

interpreters.

Work Completed

All success criteria were met, and the optional extension to support dynamically linked

binaries is implemented. The emulator produced passes all test cases set, and significantly

surpassed the original performance goal, achieving 30.5x speedup in Dhrystone and 18.0x

in CoreMark when compared to spike, the reference RISC-V interpreter. When com-

pared against QEMU, a well-known multi-platform emulator, it achieves 9.06x speedup

in Dhrystone, 2.60x in CoreMark, and 2.49x in SPECint. This project applies traditional

compiler optimisations to achieve high performance. As far as I am aware, no other

open-source emulators do the same.

Special Difficulties

None

3

Declaration

I, Xuan Guo of Peterhouse, being a candidate for Part II of the Computer Science Tripos,

hereby declare that this dissertation and the work described in it are my own work,

unaided except as may be specified below, and that the dissertation does not contain

material that has already been used to any substantial extent for a comparable purpose.

Signed

Date May 14, 2018

4

Contents

1 Introduction 15

2 Preparation 17

2.1 RISC-V . 17

2.2 Binary Translation . 18

2.3 Existing Emulators . 18

2.4 Requirement Analysis . 19

2.5 Development Methodology . 21

2.6 Choice of Tools . 21

2.6.1 Programming Language . 21

2.6.2 Toolchain . 22

2.6.3 Test Suite . 22

2.6.4 Development Environment . 22

2.6.5 Backup and Version Control . 23

2.6.6 Related Courses . 23

3 Implementation 25

3.1 Interpreter . 25

3.1.1 Software Floating-point Library . 26

3.1.2 Trap Handling . 26

3.1.3 Environment Emulation . 26

3.2 Simple Binary Translation . 28

3.2.1 Division Exception Handling . 28

3.2.2 Exception Handling Frames . 29

3.3 Optimising Binary Translation . 30

3.3.1 Intermediate Representation . 31

3.3.2 Frontend . 33

3.3.3 Region Formation . 34

3.3.4 Infinite Loop Handling . 35

3.3.5 Dominance Tree Computation . 35

3.3.6 Load and Store Elimination . 36

3.3.7 Local Value Numbering . 41

3.3.8 Basic Block Ordering . 42

3.3.9 Code Motion/Scheduling . 43

5

3.3.10 Backend . 44

3.3.11 Chaining . 44

3.3.12 Compilation Threshold . 45

3.4 Summary . 45

4 Evaluation 47

4.1 Correctness . 47

4.1.1 RISC-V ISA Tests . 47

4.1.2 Testing Floating Point Arithmetic 47

4.1.3 Benchmark Suites . 48

4.1.4 Cross-validation Between Execution Engines 48

4.2 Performance . 49

4.2.1 Dhrystone and CoreMark . 49

4.2.2 SPECint . 50

4.3 Tuning Region Size Limit . 51

4.4 Analysis of Compilation Overhead . 53

4.5 Summary . 57

5 Conclusion 59

5.1 Achievements . 59

5.2 Further Directions . 59

Bibliography 60

A Source Directory Tree 63

B Sample Code 67

B.1 Trap Handling . 67

B.2 Environment Emulation . 68

B.3 Exception Handling Frames . 69

C Sample Output 71

D SPECint Scores 73

E Project Proposal 75

6

List of Figures

3.1 Overview of interpretation and translation stages 25

3.2 Memory layout of native application . 27

3.3 Memory layout of this project . 27

3.4 Simplified view of exception handling structures 30

3.5 Overview of stages of the optimising binary translator 31

3.6 The optimised IR graph from a typical Fibonacci function 32

3.7 The unoptimised IR of li a0, 1 generated by the frontend 34

4.1 Dhrystone performance in DMIPS . 50

4.2 CoreMark performance in iterations per second 50

4.3 SPECint scores relative to the reference machine 51

4.4 SPECint scores relative to the native performance 52

4.5 Execution time versus region size limit . 53

4.6 Compilation time versus region size limit 53

4.7 Average region size versus region size limit 54

4.8 Number of regions compiled versus region size limit 54

4.9 Total number of blocks compiled versus region size limit 55

4.10 Number of unique blocks compiled versus region size limit 55

4.11 Distribution of number of affiliated regions regarding unique blocks, with

region size limit 16 . 56

4.12 Distribution of number of affiliated regions regarding all blocks, with region

size limit 16 . 56

4.13 Average number of affiliated regions per block versus region size limit . . . 57

7

8

List of Algorithms

1 Region formation . 35

2 Keepalive edge insertion . 36

3 Lengauer-Tarjan algorithm . 37

4 Computing dominance frontier . 37

5 Filling φ-nodes in load elimination . 38

6 Renaming in load elimination . 39

7 Load elimination . 39

8 Filling φ-nodes in store elimination . 40

9 Renaming in store elimination . 40

10 Store elimination . 41

11 Find the earliest legal block . 43

12 Schedule nodes as late as possible . 43

9

10

List of Tables

D.1 SPECint results of native run . 73

D.2 SPECint results of QEMU . 74

D.3 SPECint results of this project . 74

11

12

List of Listings

B.1 Trap handling in main/signal.cc . 67

B.2 Excerpt from util/safe memory.cc . 67

B.3 brk emulation in emu/syscall.cc . 68

B.4 Exception handling frame template . 69

C.1 Fibonacci number calculation function fib 71

C.2 RISC-V assembly of fib . 71

C.3 AMD64 assembly generated for fib . 72

13

14

Acknowledgements

I would like to express my sincere gratitude to the following individuals. This project

would not be as successful as it was without their encouragement and suggestions.

• Dr Timothy Jones, for supervising my project and giving invaluable advice, guid-

ance and suggestions for the project and this dissertation.

• Dr Robert Mullins, for his encouragement and valuable feedbacks for this disser-

tation.

• Junwei Yuan and Ranjeev Menon, for proofreading my dissertation and giving

suggestions.

• My family and friends, for their understanding, support and encouragement.

Chapter 1

Introduction

Over the past decade, the open-source software community has expanded rapidly. Besides

individual open-source enthusiasts, numerous technology companies also contribute code

or funding to the community. The hardware platforms that software runs on, however,

are mostly proprietary. The RISC-V Foundation [16] is one notable exception, bringing

open-source concepts to the hardware world, aiming to develop an open microprocessor

architecture standard that everyone can use without royalty.

The concept about open-source hardware has attracted interest and popularity in the

open-source community. However, as a new instruction set architecture (ISA), RISC-V is

disadvantageous compared to established architectures like AMD64 (also called x86-64)

in terms of ecosystems. Most modern desktops and servers are powered by processors

running the AMD64 ISA, and these systems cannot run RISC-V binaries natively. This

essentially creates a barrier for developing software for or porting software to the RISC-V

ISA. For the ecosystem to grow, there exists a need for a RISC-V emulator that has both

good performance and interoperability with existing environments.

Emulators usually come with huge performance penalties. Dynamic binary translation

(DBT) is a technique to reduce performance overhead by translating binaries compiled for

one architecture to another instead of performing interpretation, whereby each instruc-

tion is executed in software in isolation. Existing emulators either use no DBT or use

a very simple DBT that translates code based on templates only. QEMU uses an inter-

mediate representation (IR), a high-level description of each instruction that can be used

to run analysis and transformations on, but in QEMU its usage is mainly for portability

instead of optimisation concerns. These existing tools share very little in terms of struc-

ture and optimisation passes with traditional compilers. On the other hand, just-in-time

(JIT) compilers, which compile source code down to machine code immediately before

execution, are more closely related to traditional ahead-of-time compilers, using similar

techniques or even sharing the same codebase (e.g. LLVM JIT, GCC’s libjit). Therefore,

utilising traditional compiler optimisations within a DBT emulator is an interesting area

to investigate.

This project aims to develop an emulator that is capable of running unmodified RISC-V

15

16 CHAPTER 1. INTRODUCTION

Linux binaries directly on an AMD64 Linux system, utilising dynamic binary transla-

tion techniques and compiler optimisations to achieve better performance than simple

interpreters.

There are many challenges in an ambitious project like this. This project requires a deep

understanding of architecture, compilers and system programming. The goal to achieve

binary compatibility with RISC-V Linux binaries mandates that all components in this

project be equivalent in behaviour to a native RISC-V Linux machine. Working at the

binary level also makes the project extremely difficult to debug, adding more risks to

the project. The biggest challenge is the tight time budget, given that this is a Part II

project. Another binary translator targeting RISC-V to AMD64, rv8, took around 2

years to reach its current status, and it still cannot execute many RISC-V Linux binaries.

Despite all the risks, I have managed to achieve and exceed the original success criteria

and beat all existing emulators by a margin. The following chapters of this dissertation

will discuss the planning, design, implementation and evaluation of this project.

Chapter 2

Preparation

2.1 RISC-V

RISC-V is an open, general-purpose ISA. It began as a research project in 2010 at the

University of California, Berkeley when researchers failed to find a suitable ISA to use for

new research projects [4]. Commercial ISAs, such as AMD64 or ARM, are too complex

in design and too restrictive due to intellectual property issues. Existing open-source

ISAs often have no clear specifications and are usually released under copyleft licences,

whose requirement to make modifications publicly available prevents commercial adop-

tion. RISC-V was developed to address these issues and to support computer architecture

research and education within Berkeley, but it also attracts attention from industry. In

2015, the non-for-profit RISC-V Foundation was created to maintain the stability of the

ISA and its wider adoption.

RISC-V is a universal ISA. It is designed to work well with existing software stacks and

languages, to suit all sizes of processor, from the smallest micro-controllers to the largest

super-computers, and to allow extensive specialization for different workloads. To achieve

these goals the ISA is designed with modularity and simplicity in mind, so it can be

efficiently implemented for all microarchitectures and fabrication technologies.

The instruction set is divided into base integer ISAs and optional extensions. At the time

of writing, stable base ISAs include RV32I and RV64I, namely 32-bit and 64-bit base

integer ISAs. RV128I, the 128-bit ISA, and RV32E, a 32-bit integer ISA with a reduced

number of registers for embedded micro-controllers are under development. Extensions

can be vendor-specific, and there also exists standardised extensions for commonly imple-

mented features. Current stable standard extensions include the “M” extension for integer

multiplication extension and division, the “A” extension for atomic instructions, the “F”

extension for single-precision floating-point, the “D” extension for double-precision float-

ing point and the “C” extension for compressed instructions. IMAFD are collectively

known as the “G” (general-purpose) ISA. General-purpose RISC-V processors intended

to run Linux/Unix are usually expected to also support the compression extension to

reduce the code size.

17

18 CHAPTER 2. PREPARATION

2.2 Binary Translation

To run a program compiled for a particular ISA and application binary interface (ABI)

on a different platform, an emulator is needed. The architecture emulated is called the

guest architecture, and the architecture that an emulator runs on is called the host ar-

chitecture. An emulator can be further classified as an interpreter or a binary translator.

An interpreter is an emulator that works by decoding and emulating instructions one at a

time. Binary translators can achieve significant speedup by translating binaries from the

guest ISA to the host ISA and executing the translated binaries, avoiding the repetitive

decoding and dispatching costs in interpreters. Binary translators can be further divided

into static binary translators, which translate all code ahead-of-time, or dynamic binary

translators which translate code at runtime when the code is actually used.

Binary translation has a wide range of applications. Emulators such as QEMU utilise

binary translation for fast emulation, and virtual machines, such as VMware, Virtual-

Box, are using binary translation if hardware virtualisation is unavailable. Microsoft uses

binary translation to support x86 applications on its ARM version of its Windows 10 op-

erating system. Apple used binary translation a few times to aid its architecture changes,

once from M68K to PowerPC and once from PowerPC to x86. Binary translation is

also useful for other purposes. Program analysis tools such as Valgrind utilise binary

translation to instrument the code while retaining the original semantics and reasonable

performance.

Dynamic binary translation is also a type of JIT compilation. A conventional JIT trans-

lates a compile abstract syntax tree (AST) or bytecode into native code for immediate

execution, instead of producing a binary. JIT techniques are widely used in products

such as Oracle’s Java Hotspot VM, Microsoft’s .NET Runtime, Google’s V8 JavaScript

Engine, etc. Implementations of JIT engines provide very useful insights for the design

of this project.

2.3 Existing Emulators

There were already a number of RISC-V emulators in existence at the start of this project.

I have evaluated them case-by-case to determine whether they can be used as the baseline

or as the starting point of this project.

The RISC-V Foundation maintains an emulator riscv-isa-sim [22]. It is also called

spike, as it is the name of the executable file of the project. In the rest of this dissertation,

I will use spike to reference it. It is a cycle-accurate simulator that can either perform

whole-system simulation or user-space simulation via a so-called proxy kernel riscv-pk.

Fundamentally it is an interpreter, but with various tricks applied it is much faster than

näıvely implemented interpreters.

QEMU [5] is an emulator that uses binary translation. It is a mature emulator that

supports both system-level emulation and user-space emulation of both Linux and BSD

2.4. REQUIREMENT ANALYSIS 19

binaries. By utilising an IR, QEMU supports emulation of multiple guest ISAs on multiple

host platforms. A port of QEMU is maintained by the RISC-V Foundation, and was

upstreamed on 9 Mar 2018.

rv8 [7], developed by Michael Clark from SiFive, is another RISC-V to AMD64 binary

translator. It has inferior or similar performance compared to QEMU when I evaluated it

for the draft project proposal, but it has improved significantly since then, outperforming

QEMU in some benchmarks tested. rv8 relies on handcrafted templates to perform binary

translation. Its codebase is very immature compared to QEMU, and it fails to run many

Linux binaries.

All of these tools would be ideal candidates for performance comparison. I have chosen

spike as the primary performance target, as outperforming the reference interpreter is

a significant and non-risky result. QEMU is selected to be the secondary performance

target, as its maturity allows multiple benchmarks to be used for comparison.

I made the decision to not use any of the existing emulators as the starting point. spike

is too specialised on its cycle-accuracy model and its optimisation tricks make it very hard

to make large-scale changes, such as adding binary translation. QEMU is licensed under

GPL, a copyleft license. I believe in permissive open-source licenses, so I would prefer my

work not to be polluted by the GPL, therefore I have also ruled out QEMU. rv8 makes

heavy use of C++ templates, so it is hard to understand and modify. Its immaturity also

means it is likely that I would end up debugging existing bugs, rather implementing my

own code. The risk of starting from scratch is low. Even though I might have to spend a

few weeks writing a decoder and interpreter, I would have first-hand knowledge about the

codebase and therefore save time parsing the existing codebase and potentially achieve

better code re-use. Combing all these factors I have decided to start fresh.

2.4 Requirement Analysis

The mandatory functional requirement for this project is that it must be able to execute

unmodified, statically-linked, single-threaded 64-bit RISC-V Linux binaries that use only

common system calls.

• RISC-V Linux binaries are formally defined as ELF files [10] with ELF type “EXEC”

(executables) or “DYN” (dynamic executables), ELF machine type “RISC-V”, and

ELF OS/ABI “GNU/Linux”. As RISC-V Linux binaries assume the processor to

support at least RV64GC, the base 64-bit instruction set and all five standard ISA

extensions MAFDC need to be supported.

• Statically-linked ELF binaries in this dissertation are defined to be ELF files does

not contain the “INTERP” program header, and the ELF type is not “DYN”.

• Single-threaded in this dissertation means that the program being emulated does

not use the “clone” system call, shared memory map, or otherwise, to share writable

code/data memory locations with other processes.

20 CHAPTER 2. PREPARATION

• Being able to execute means the program should execute as if it were executing

under a native RISC-V Linux kernel. The program is assumed to be well-behaved: it

should not rely on a particular layout, should not request excessive memory pages,

should not exceed other potential system limits, and should not otherwise try to

detect and workaround measures in the emulator. For example, the requirement

does not mean that the emulator must execute a binary that is set to detect the

existence of an emulator and crash.

• Unmodified means that if a binary satisfying other requirements can execute natively

on RISC-V Linux, no special modifications are needed to make it execute under the

binary translator.

• Common system calls are defined to be any necessary system calls to be able to use

fopen, fread, fwrite, fseek and fclose implemented in GNU C Library (glibc).

The following requirements are important but are not mandatory for the success of this

project:

• The ability to support dynamically-linked binaries. This lifts the restriction on

the ELF file to not contain the “INTERP” header and allows the ELF type to be

“DYN”.

• Support all system calls necessary to run all benchmarks and other test suites.

The following requirements are listed as optional extensions in the project proposed, but

have been dropped due to high risks of failure:

• The ability to support multi-threaded programs. This imposes high requirements on

atomic instruction implementation. I dropped this extension early because it is an

unknown field to perform binary translations between strong and weak memory con-

sistency models and between compare-and-swap and load-linked stored-conditional

atomic models.

• The ability to support full-system emulation. As full-system emulations require

device emulation and address space translation, this extension is dropped as it is

not manageable within the time budget of this project.

The project also has non-functional requirements on its performance.

• The emulator produced by this project shall have statistically significant perfor-

mance improvement compared to spike. In this dissertation, the statistical signifi-

cance level α is set to be 5% (i.e. 95% confidence interval).

• Ideally, the emulator should have better performance than QEMU or rv8, two other

binary translators.

2.5. DEVELOPMENT METHODOLOGY 21

2.5 Development Methodology

I selected the spiral model of software development for this project. Each iteration of the

project consists of planning, risk analysis, implementation, testing and evaluation. Initial

iterations will implement basic functionality, while later iterations gradually improve upon

previous iterations, e.g. by adding more analyses and optimisation passes. The risk

analysis is important as there are many potential optimisations to implement but the

time budget is very limited. Testing would be carried out in each iteration to ensure that

at the end of each iteration the project is in a working state, passing all the unit test

cases. Simple evaluation would be performed at the end of each iteration to guide the

next iteration.

2.6 Choice of Tools

2.6.1 Programming Language

As mentioned in Section 2.3, I made the decision to start from scratch. As a result, I am

not restricted in choice of programming languages.

As the project is very low-level, requiring manipulation of machine code and access to

arbitrary memory locations, only system programming languages could be used. I have

assessed C, C++ and Rust, and eventually decided to use C++.

There are very few reasons why C should be preferred to C++, including:

• Working on an embedded system with limited memory or storage;

• Need to interact with other languages;

• Existing codebase uses C for historical reasons.

As none of the above reasons apply for this project, C is ruled out.

Rust is a modern system programming language that does not have many historical

pitfalls like C++. Its type safety and functional programming patterns also appeal to

me. However, as it is likely that the emulator needs to handle signals, and signal handling

in Rust is still missing, I decided not to adopt Rust.

C++ is the only choice remaining. I have used C++ for a few years already, and I consider

myself reasonably experienced in C++, so choosing C++ is less risky than a new language

such as Rust. C++’s high-level paradigms can make algorithm implementations easier

and more readable, while it also has low-level abilities such as using C libraries, performing

signal handling, and accessing arbitrary memory. Overall I believe C++ is the best fit for

the project. C++17, the latest C++ revision, was chosen to make use of new language

and library features.

22 CHAPTER 2. PREPARATION

Scripting languages and domain-specific languages, such as Makefile, bash, Python,

JavaScript and Matlab will be used wherever suitable to simply development and evalua-

tion. Matlab requires a license to use, and I obtained mine from the University’s Software

Distribution site.

2.6.2 Toolchain

The RISC-V Foundation has ported a few toolchains to RISC-V, including Binutils and

GCC, and the ports are subsequently upstreamed. A cross-compilation toolchain is nec-

essary to produce RISC-V Linux binaries to test and evaluate the project. I compiled

GCC 7.2 and Binutils 2.29 with target riscv64-unknown-linux-gnu for this propose.

Even though GCC released 7.3 and Binutils released 2.30 in January 2018, I decided not

to upgrade the tools to maintain consistency of evaluation results.

The toolchain used to compile this project is GCC 7.2 and Binutils 2.26.1. GCC 7.2 is

used as GCC 7+ is required for C++17, and 7.2 is the latest version when I started the

project. Binutils 2.26.1 is used as it is the default version installed using the package

manager in my compilation environment. GNU Make is used for build automation.

2.6.3 Test Suite

I elected to use riscv-qemu-test and Berkeley TestFloat for unit testing and Dhrystone,

CoreMark and SPECint together for functional testing and performance benchmarking.

Details are covered in Chapter 4.

The SPEC CPU benchmark suite requires a license. The University of Cambridge holds

such a license and I have used the license for the benchmarking.

2.6.4 Development Environment

Any Linux environment on AMD64 can be used as a development and evaluation environ-

ment. I decided to use my own laptop that runs Microsoft Windows as the development

environment for convenience. Window subsystem for Linux was enabled to provide a

Linux compatible environment. In case that fails, I made plans to use the MCS Linux

machines as a backup. Microsoft Windows requires a license to use and I obtained mine

from the Microsoft Imagine programme for students.

Having said that, it is inconvenient to run time-consuming benchmarks on a personal

laptop, as I frequently need to carry it around to attend lectures, supervisions, etc. Dr

Timothy Jones kindly provided a workstation for running benchmarks.

2.6. CHOICE OF TOOLS 23

2.6.5 Backup and Version Control

All paperwork and experiment results were periodically synchronized to OneDrive for

Business storage using rsync. I used my personal OneDrive for Business tenant instead

of the one provided by the university.

All source code were version-controlled using Git and the local repository was kept in sync

with a private GitHub repository. The master branch always compiled free of warnings

and errors, and was free from obvious bugs after any commits. All commits on master

have meaningful commit messages, and contain all changes required for a functionality.

Usage of private GitHub repository requires subscription and GitHub has kindly provided

free subscriptions for all students.

2.6.6 Related Courses

Knowledge of computer architecture, compiler construction and optimisation techniques

was required to complete the project. This project is highly relevant to Part II Optimising

Compilers, Part IB Compiler Construction, and is relevant to Part IB Computer Design

and Part II Comparative Architecture.

24 CHAPTER 2. PREPARATION

Chapter 3

Implementation

This project implements three execution engines for the emulator, shown in Figure 3.1.

This includes an interpreter, a simple binary translator and an optimising binary trans-

lator. The three engines, although using different approaches for execution, share the

same RV64GC instruction decoder and the same memory layout of process states (e.g.

registers). Two binary translation engines share the same AMD64 assembler.

RISC-V
Decoder

Interpreter

Template-based
Binary Translator

AMD64
Encoder AMD64 Binary

IR-based
Binary Translator

AMD64 Assembly

AMD64 AssemblyRISC-V Assembly

Invoke for Untranslated Instructions

RISC-V Binary

Figure 3.1: Overview of interpretation and translation stages

3.1 Interpreter

Despite the ultimate goal of the project being to create a binary translator, an interpreter

is an important part of the codebase. In the design goal of this project, RV64IMC

instructions will be binary translated, while AFD extensions still need to be supported for

ABI compatibility. The interpreter exists in the codebase to support these instructions.

When such instructions are encountered by the binary translator, a function call to the

interpreter is generated.

The interpreter also serves as a tool for validation and debugging purposes. Interpreters

are very simple, so they can be relatively easily tested, debugged and validated. On the

25

26 CHAPTER 3. IMPLEMENTATION

other hand, it is very difficult to test whether the actual behaviour of the program matches

the expected behaviour, when the program is transformed and the native AMD64 code

is generated and executed. Execution traces of the interpreter and the binary translator

can be compared to discover issues in the binary translator. This technique helped to

pinpoint many bugs.

3.1.1 Software Floating-point Library

When trying to support floating point instructions in the interpreter, it turns out RISC-V

requires an additional rounding mode. IEEE 754 [3] defines 5 rounding modes, namely

towards 0, towards −∞, towards +∞, to nearest and ties to even, to nearest and ties

away from 0. The last rounding mode is added in the 2008 revision and exists in neither

C/C++ standard nor AMD64, but is required by RISC-V [23]. The difference requires

software floating point support. I decided to implement a software floating library from

scratch using modern C++ for better integration with the interpreter.

3.1.2 Trap Handling

The emulated application can access arbitrary memory locations, therefore it is possible

that a load/store instruction will trigger synchronous signals, or traps, such as SIGSEGV

or SIGBUS. If they are not handled properly, the entire emulator will abort, which is not

desirable. Traditional emulators solve the issue by using setjmp on the interpreter’s main

loop and longjmp in the signal handler. The approach is not ideal as setjmp/longjmp

have no guarantees on executing destructors, breaking C++’s resource acquisition is ini-

tialization (RAII) paradigm in which a resource is tied to an object’s lifetime.

I use C++’s zero-overhead exceptions for handling signals. When signal is received, a

C++ exception is thrown from the signal handler. This needs special compiler support

which is fortunately available in commonly used compilers, such as GCC, Clang and ICC,

via the -fnon-call-exceptions compilation flag [15]. As turning on non-call exceptions

will negatively impact performance, only a single file is compiled with the flag which ex-

poses my functions util::safe_read<T>, util::safe_write<T>, and all guest memory

accesses that can potentially cause traps are replaced with calls to these two functions.

3.1.3 Environment Emulation

In order to execute unmodified Linux binaries, the emulator needs to also emulate envi-

ronment setup, load binaries and translate all system calls made by the guest program.

When the emulator starts, the following happens in order:

• Environment variables and command line arguments are pushed onto the stack.

• Random seeds are pushed onto the stack. Dynamically linked binaries rely on the

random seeds to perform randomization.

3.1. INTERPRETER 27

Kernel Area

Text & Data

Stack

Heap

Memory Map

Figure 3.2: Memory layout of native ap-

plication

Kernel Area

Emulator Text & Data

Emulator Stack

Guest Heap

Emulator Heap

Guest Text & Data

Guest Stack

Memory Map

Figure 3.3: Memory layout of this

project

• Specified file is loaded and its program segments are mapped into memory.

• If the specified file is dynamically linked, its interpreter is also loaded and mapped.

• Auxiliary vectors are set up to pass UID, GID, location of random seed and infor-

mation about ELF to the emulated program [14]. These vectors are required by

dynamically linked binaries.

• Registers are initialised and control is handed to the emulated program.

To allow the emulated program to freely place itself, the emulator text and data is placed

at 0x7fff00000000. The kernel will therefore place the heap and stack on higher ad-

dresses. The guest application can rarely see any differences in execution as it makes no

assumptions about stack addresses. The chance of address space collision is negligible as

normal applications rarely ask themselves to be placed in such a high location. Figure 3.2

and Figure 3.3 illustrate the comparison between memory layouts of native and emulated

application.

Dynamically linked binaries in addition need to access shared libraries in the system root.

As the emulated program cannot use libraries in the host OS’s system root, system root

translation is also implemented by redirecting accesses to files if the path exists in the

specified system root (default to /opt/riscv/sysroot).

System calls made by the guest program are translated and then delegated to the actual

kernel. Most system calls require only data structure translation (as the memory layout

may be different), flag and error code translation. Some file accesses need to be treated

specially, e.g. access to files under /proc/self/, in addition to aforementioned system

root access redirection. For mmap and mprotect, PROT_EXEC is translated into PROT_READ

as the guest program is not directly executed.

28 CHAPTER 3. IMPLEMENTATION

brk, the system call to adjust the size of the heap, is entirely emulated by maintaining

a brk pointer and uses mmap to allocate new pages if the heap has to be expanded. One

of the major obstacles encountered during implementation was related to the behaviour

of brk when the heap is shrunk and then expanded. According to the legacy POSIX

standard [1] (the newer version of POSIX removes specification about brk) the memory

content is unspecified, while examining glibc’s source code reveals that glibc assumes the

area to be zeroed, therefore not calling memsets for callocs in certain scenarios. Glibc’s

expectation matches the behaviour of Linux, as Linux will reclaim pages when the heap

is shrunk, and therefore zeroed pages will be allocated when the heap is expanded again.

I modified the implementation of brk to mimic Linix’s behaviour.

To allow diagnosing system call emulation of guest programs, I have also implemented a

single system call tracer which logs each guest system call. The tracer can be turned on

using a runtime option --strace, regardless of the execution engine being used.

3.2 Simple Binary Translation

I implemented a simple binary translator for RISC-V using templates. All guest archi-

tectural registers are stored in memory, and each instruction is translated independently

using the predefined templates. A whole basic block is translated at a time, where a basic

block is a continuous sequence of instructions that ends with a branch instruction, so if

the first instruction is executed, all instructions in the block are executed.

All translated code is cached in memory to avoid recompilation when the same program

counter (PC) is executed again, unless there is an explicit fence.i instruction to flush the

instruction cache. There are two levels of cache. A tagged, direct-mapped cache is used

for fast cache lookup, and a hash table is used for slow cache lookup. Each time a PC

is given, the lowest significant bits (excluding the last bit, which is always 0 as RISC-V

instructions are 16-bit aligned) are used to index into the cache. If the tag matches, then

the cached code will be executed, otherwise the PC will be used to look up in the hash

table. If both lookups fail, the translator is invoked.

In the binary translator the INSTRET counter increment is disabled by default. IN-

STRET is the control status register (CSR) representing the number of instructions re-

tired in RISC-V. It can be used for performance monitoring, however it is usually unused

by normal applications. It can be enabled by a runtime flag --with-instret. This

matches the default behaviour of rv8 and QEMU.

3.2.1 Division Exception Handling

On AMD64, division by zero or quotient overflow will result in a division exception being

raised [12]. RISC-V differs from AMD64 and many other instruction sets by not having

division exceptions. This difference must be addressed in order to preserve the semantics

of the translated program.

3.2. SIMPLE BINARY TRANSLATION 29

Two cases may cause a division exception: the divisor being zero, or in case of a signed

division, the dividend being the signed minimum value and the divisor being -1. Existing

emulators, including rv8 and QEMU port, generate code to check the operands before the

division is executed. However, as the C/C++ standard mandates that divide by zero or

signed arithmetic overflow is an undefined behaviour, in pure C/C++ code it is extremely

unlikely that the checks will ever fail. In some other languages, division exceptions will

trigger language-level exceptions, which are also considered rare cases. By checking the

operand each time before execution, performance penalties are introduced to the common

case.

This project seeks an alternative strategy. It relies on the fact that the division exception

will be caught by the operating system and then be turned into SIGFPE, the floating-

point exception signal, and the fact that in POSIX-compliant operating systems, signal

handlers can inspect and modify the program’s context at the point the exception was

raised using sigaction. When a SIGFPE is received, the signal handler will disassemble

the instruction at the current RIP (AMD64’s name for the program counter) and read

out the value of the dividend and the divisor from the execution context. It will then

place the correct quotient and remainder value defined per the RISC-V standard into the

RAX and RDX registers, increment RIP to the next instruction and ask the operating

system to resume execution. For the application code, it will behave as if the DIV or

IDIV instruction succeeds without faulting. This approach eliminates the overhead of

range checks while preserving the correctness of the semantics defined by the ISA.

3.2.2 Exception Handling Frames

As mentioned in 3.1.2, traps will be converted into userspace exceptions, so any memory

accesses in the dynamically generated code may throw exceptions. Calls to interpreters

might also throw exceptions. The thrown exception must be able to propagate through

the generated code. In Linux and Unix, exception handling in C++ is powered by a

language-agnostic exception handling and stack unwinding library and language-specific

parts [2]. A DWARF derived format is used to describe how to restore registers saved in

stack frames and handle exceptions, allowing the unwinding library to correctly unwind

the stack.

In DWARF [9], the common information entry (CIE) contains a pointer to the personality

routine. The personality routine is a language-specific routine that will determine whether

an exception should be caught, and how to react with stack unwind. The frame description

entry (FDE) contains a 64-bit value called the language specific data area (LSDA), usually

a pointer to metadata that assists the personality routine. Usually one FDE is generated

per function, so the personality routine can efficiently acquire the corresponding LSDA.

Figure 3.4 gives an overview of the data structures. Normally these structures are placed

in the .eh_frame section, but it is also possible to register/deregister additional ones in

the runtime using __register_frame and __deregister_frame.

30 CHAPTER 3. IMPLEMENTATION

CIE

Personality

FDEs

FDE

CIE

LSDA

PC Range

Unwinding Instructions

Personality Routine

LSDA

Code Segment

Uses

Describes

Figure 3.4: Simplified view of exception handling structures

When an exception happens, the unwinding library can search the corresponding FDE

using the PC. It can therefore also acquire the LSDA and call the personality routine. If

the personality routine decides to catch the exception, it will also set up the contexts.

As there are no high-level concepts like exception handlers and destructors in machine

code, a manually crafted CIE and FDE template suffices. A personality routine is imple-

mented to provide precise exception support: in the simple DBT, the PC register and the

INSTRET CSR (if enabled) are updated only once per basic block, so when the trans-

lated code is unwound, the correct values of both PC and INSTRET CSR need to be

determined by the current host RIP register, and written back into the memory-backed

guest architectural register file.

3.3 Optimising Binary Translation

A drawback of the template-based binary translation approach is lack of portability. If

the binary translator intends to support m guest architectures on n host architectures,

mn sets of templates need to be crafted. An alternative approach, which is also used by

QEMU, is to first translate into an IR, and then translate the IR to the host architecture.

The optimising binary translator implemented in this project additionally performs IR

transformations to improve performance. Figure 3.5 gives an overview of stages of the

optimising binary translator.

3.3. OPTIMISING BINARY TRANSLATION 31

Region Formation
Infinite Loop Fixup

IR Graphs for Basic Blocks

Local Optimisations:
* Local Load/Store Elimination
* Local Value Numbering

Unified IR Graph

Frontend

IR Graphs for Basic Blocks

Global Optimisations:
• Dominance Tree Computation
• Global Load/Store Elimination
• Control Flow Simplification
• Local Value Numbering

Unified IR Graph

Instruction Selection / Lowering

Unified IR Graph

Basic Block Ordering
Code Motion / Scheduling

List of IR Nodes

Register Allocation
Code Generation

Figure 3.5: Overview of stages of the optimising binary translator

3.3.1 Intermediate Representation

This project uses a a graph-based intermediate representation (also called sea of nodes).

The design of the IR is inspired by libFIRM [6] and the C2 compiler in Hotspot JVM [8].

Figure 3.6 shows an IR graph for calculating Fibonacci sequence. Nodes in the graph

represent computations and edges represent dependencies. All types of dependence are

explicitly modelled as edges, including control-flow dependencies (red edges in the figure),

memory dependencies (blue edges) and data-flow dependencies (black edges). Each node

accepts one or more operands as input (except for the constant node and entry node),

and produces one or two values as output (except for the exit node). All values in the

IR are typed with one of i1, i8, i16, i32 and i64, or control or memory if they represent

control-flow or memory dependence. Each value of type control or memory can be only

used once, except for keepalive edges (see Section 3.3.4).

The graph nature of the IR means that there are no variables, so it is naturally in SSA

form. The graph form makes transformation easier by not having to worry about where

to insert new instructions, but it makes code generation harder as the graph has to be

converted into a linear list of instructions first.

Nodes include:

32 CHAPTER 3. IMPLEMENTATION

entry

block

store_register r15

i64 constant 1

load_register r10

memory i64

i1 ge

i64 constant 1

if

control control

block

load_register r10

memory i64

i64 add

i64 constant 1

store_register r12

store_register r10

i64 constant 1

store_register r14

i64 constant 3

store_register r13

i64 constant 1

store_register r15

i64 constant 1

i1 ne

i64 constant 3

if

control control

block

if

control control

store_register r15

i1 ne

i64 phi

i64 constant 1

i64 add

i64 phi

i64 constant 1

store_register r10

i64 phi

i64 constant 3

i64 add

i64 constant 1

store_register r14

store_register r13

i64 phi

block

load_register r1

memory i64

i64 and

i64 constant -2

store_register r64

jmp

exit

Figure 3.6: The optimised IR graph from a typical Fibonacci function

3.3. OPTIMISING BINARY TRANSLATION 33

• entry, exit: special nodes, there is exactly one copy of each node in each graph.

• block: starting of a basic block. The block node takes one ore more control inputs,

denoting successors in the CFG.

• jmp, if: end of a block. A jmp node produces a control output while if takes an i1

input and produces two control outputs.

• phi: merge values when merging control flow.

• call: call a helper function. Produced when the instruction cannot be binary trans-

lated.

• constant: refers to a constant value.

• cast: casting between different integer types. Upcasts can either be sign-extended

or zero-extended.

• neg, not, add, sub, xor, or, and, shl, shr, sar: unary and binary arithmetic nodes

that produce one output.

• eq, ne, lt, ge, ltu, geu: comparison nodes that produce an i1.

• mux: ternary node that takes an i1 and selects one of the two other operands as

appropriate.

• mul, mulu, div, divu: arithmetic nodes that take two input and produce two outputs.

For multiplication they are the lower bits and higher bits of the product, and for

division they are the quotient and remainder.

• copy: produce a copy of a value. This is redundant in a graph-based SSA, but it

can ease register allocation.

• Other backend-specific nodes. The AMD64 backend implemented defines an address

node to represent complex address modes, and a lea node to represent AMD64’s load

effective address instruction.

As most nodes takes fewer than two operands and produce fewer than two values, I imple-

mented a util::Small_vector<T, N> to place values on the stack (or in the containing

structure) instead of allocating them on the heap. The optimisation reduces memory

allocation and deallocation by approximately one third.

To facilitate debugging and visualisation, I have implemented a pass to print out

Graphviz’s .dot representations of the IR graphs. An visualiser is also implemented to au-

tomatically retrieve the printed Graphviz code from the log and present an user interface

for easy speculation.

3.3.2 Frontend

A minimal frontend is implemented to translate RV64IM instructions into the IR. Com-

pressed opcodes defined in the C-extension are expanded into their full form during de-

34 CHAPTER 3. IMPLEMENTATION

coding, so the frontend does not have to handle them specially. The frontend is mini-

mal as it performs virtually no optimisations: e.g. li a0, 1, which is a shorthand for

addi a0, x0, 1, will be translated to Figure 3.7.

i64 constant 0 i64 constant 1

i64 add

store_register 10

Figure 3.7: The unoptimised IR of li a0, 1 generated by the frontend

Similarly mv will be translated to a load register node, a constant 0 node, an add node,

and a store register node. After generating the IR graph, a simplified version of load

and store elimination (see 3.3.6) is applied followed by local value numbering (see 3.3.7),

which takes care of constant folding. It is essential that the basic optimisations are applied

before region formation, so that indirect jumps such as auipc t0, offset; call t0 can

be treated as a direct jump.

3.3.3 Region Formation

Performing transformations and optimisations only on a single basic block is insufficient

to achieve high performance. However unlike traditional compilers, which know about the

control flow in the program, at the machine code level it is difficult to precisely recover

the control flow graph, especially when the binary is compiled with optimisations enabled.

A very simple method is used in this project to combine blocks together, described by

Algorithm 1.

This essentially means that known reachable blocks will be decoded speculatively. A size

limit (measured as a number of basic blocks) is imposed to prevent the binary translator

from forming a region containing a huge number of blocks that may never be executed.

The limit is tunable in runtime via a flag --region-limit=<n>, and details about tweak-

ing it are described in Section 4.3. Special treatment is made to ensure that the foreach

loop processes newly added blocks later, so the control flow graph is explored in a breadth-

first manner. This prevents the algorithm from following a deep but unlikely branch. As

loop bodies are usually small, a region is usually able to contain all blocks of the loop

bodies, resulting in significant speedup.

3.3. OPTIMISING BINARY TRANSLATION 35

repeat

foreach b ∈ pred(exit) do

if PC is set to a constant p then

if p is already added then

modify b to jmp to the block for p instead of exit

else if region size limit is not reached then

decode p and add it to the graph

break

until no changes are made
Algorithm 1: Region formation

3.3.4 Infinite Loop Handling

The IR of this project is represented in a graph structure. There is a single entry node

and a single exit node. Two desired properties for the graph are that for every block in

the program,

• there is a control path flowing from the entry node to the block, and

• there is a control path flowing from the block to the exit node.

The first property is always true considering how region formation works, however the

second is not if the code contains infinite loops. Without the second property it is difficult

to perform certain program transformations and analyses:

• Dead code elimination via garbage collection will recycle blocks within the infinite

loop, therefore breaking the semantics of the program.

• The post-dominator tree will not exist, as some blocks will not have successors,

causing some algorithms depending on post-dominator analysis to fail.

The issue is dealt with by inserting keepalive edges, which are pseudo control-flow edges

from a block to the exit node. Algorithm 2 describes how keepalive edges are inserted.

The keepalive edges are inserted in a way that when these pseudo-edges are considered,

the second property holds. These edges can be easily skipped in transformations that do

not require the second property to work.

3.3.5 Dominance Tree Computation

Dominator and post-dominator trees are very helpful for transformations and analysis in

SSA form. Immediate dominator computation using data-flow analysis has time com-

plexity O(mn) where n is the number of blocks and m the number of control flow edges.

The Lengauer-Tarjan algorithm [18] improves the time complexity to O(mα(m,n)) with

α being the inverse Ackermann function.

36 CHAPTER 3. IMPLEMENTATION

unseen blocks ← {all blocks reachable from entry}
worklist ← pred(exit)

while unseen blocks 6= ∅ do

while worklist 6= ∅ do

remove a block b from worklist

if b ∈ unseen blocks then

unseen blocks ← unseen blocks \ {b}
worklist ← worklist ∪ succ(b)

if unseen blocks 6= ∅ then

pick a block b from unseen blocks

add a keepalive edge from b to exit

worklist ← worklist ∪ {b}

Algorithm 2: Keepalive edge insertion

This project uses a simple version of the Lengauer-Tarjan algorithm, described by Al-

gorithm 3. The algorithm is adapted from [20] with worse time complexity O(m log n)

but performing better when number of blocks is small. Immediate post-dominators are

computed similarly, except that the succ(i) in the algorithm is replaced with pred(i) and

the depth-first search operates on the reverse graph.

Dominance frontiers are also computed, using the straight-forward algorithm [11]. Post-

dominance frontiers computation is similar, using immediate post-dominators instead and

replacing pred(i) with succ(i). Algorithm 4 gives the algorithm for computing dominance

frontiers.

3.3.6 Load and Store Elimination

The IR of this project mandates all guest architectural registers to be placed in memory

and makes register load and store explicit. This allows the frontend to produce SSA

form directly by generating a register load node before a computation is carried out,

and a register store node after the computation. To allow other data-flow analysis to

extract useful information and to achieve reasonable performance in the generated code,

redundant loads and stores need to be eliminated.

Load elimination can be performed using an SSA construction algorithm, e.g. LLVM’s

mem2reg pass. The classic SSA construction algorithm [11] assumes variables will not be

clobbered by other operations, which is not true in this project, as interpreter calls may

access or modify memory-backed registers. A modification is made to account for the

difference. Algorithm 7 describes the modified SSA-construction-based load elimination

algorithm, featuring the following 4 stages:

• The standard φ-insertion algorithm is executed.

3.3. OPTIMISING BINARY TRANSLATION 37

number all blocks from 1 to n using depth-first search

foreach i← 1 to n do

parent(i) = DFS tree parent of i

semi(i), best(i) ← i

idom(i), ancestor(i) ← ⊥
bucket(i) ← ∅

procedure eval(i)

a← ancestor(i)

if a = ⊥ then return i

if ancestor(a) 6= ⊥ then

u← eval(a)

if semi(best(i)) > semi(u) then best(i)← u

ancestor(i)← ancestor(a)

return best(i)

for i ← n to 2 by −1 do

p← parent(i)

foreach v ∈ pred(i) do

u ← eval(v)

if semi(i) > semi(u) then semi(i) ← semi(u)

add i to bucket(semi(i))

ancestor(i) ← p

foreach v ∈ bucket(p) do

u← eval(v)

if semi(u) < semi(v) then

idom(v) ← u

else

idom(v) ← p

bucket(p)← ∅
for i← 2 to n do

if idom(w) 6= semi(w) then idom(w)← idom(idom(w))

Algorithm 3: Lengauer-Tarjan algorithm

foreach block i do df(i)← ∅
foreach block i do

d← idom(i)

foreach v ∈ pred(i) do

r ← v

while v 6= d do

df(r)← df(r) ∪ {i}
r ← idom(r)

Algorithm 4: Computing dominance frontier

38 CHAPTER 3. IMPLEMENTATION

procedure fill phi(b)

if b ∈ phis then

push(value stack, phis(b))

foreach operation m in block b do

if m is a load of r then

push(value stack, output of m)

else if m is a store of r then

push(value stack, input of m)

else if m may define r then

push(value stack, ⊥)

foreach successor s of b do

if s ∈ phis then

fill corresponding operand of phi(s) to be top(value stack)

foreach s immediately dominated by b do

fill phi(s)

pop out all values pushed into the stack in this call

Algorithm 5: Filling φ-nodes in load elimination

• The renaming algorithm is executed once to populate operands of the SSA nodes,

without touching any other nodes. If a node may clobber the register value, ⊥ is

pushed to the value stack to indicate invalid value. Algorithm 5 gives an overview.

• ⊥ is propagated, replacing all φ-nodes containing ⊥ with ⊥.

• The renaming algorithm is executed again, and load elimination is performed if the

replacing value is not ⊥. Algorithm 6 gives an overview.

The actual load elimination implemented handles all architectural registers at once instead

of doing so separately for performance concerns.

Store elimination will eliminate all store nodes that will always be followed by another

store without intervening reads. This could be accomplished by very-busy expression

analysis, but I chose to use an algorithm similar to load elimination on the reversed

graph, described by Algorithm 8, Algorithm 9 and Algorithm 10. The φ-nodes created in

store elimination are transient - they will never be added to the actual graph.

After store elimination, some blocks may become empty. Such blocks are identified and

removed.

For simplicity, by default the store elimination assumes that (guest) memory operations

will not read register values. This assumption is true for most programs, but not if

the guest program will ever try to resume from a trap (as this project does for division

handling). Reliance on the assumption can be turned off by using --strict-exception.

3.3. OPTIMISING BINARY TRANSLATION 39

procedure rename(b)

if b ∈ phis then

push(value stack, phis(b))

foreach operation m in block b do

if m is a load of r then

v = top(value stack)

if v 6= ⊥ then

replace all references to output of m with reference to v

else

push(value stack, output of m)

else if m is a store of r then

push(value stack, input of m)

else if m may define r then

push(value stack, ⊥)

foreach s immediately dominated by b do

rename(s)

pop out all values pushed into the stack in this call

Algorithm 6: Renaming in load elimination

Input: architectural register number r

phis = {}
worklist = {blocks containing accesses to (or may clobber) r}
while worklist 6= ∅ do

remove a block b from worklist

foreach dominance frontier f of b do

place a φ-node n for r at entry of f

worklist ← worklist ∪ {f}
phis ← phis ∪ {f 7→ n}

value stack = {⊥}
fill phi(successor of entry)

repeat

repalce all φ-nodes containing ⊥ with ⊥
until no changes are made

rename(successor of entry)
Algorithm 7: Load elimination

40 CHAPTER 3. IMPLEMENTATION

procedure fill phi(b)

if b ∈ phis then

push(value stack, phis(b))

foreach operation m in block b in reverse order do

if m is a store of r then

push(value stack, >)

else if m is a load of or may use r then

push(value stack, ⊥)

foreach predecessor s of b do

if s ∈ phis then

fill corresponding operand of phi(s) to be top(value stack)

foreach s immediately post-dominated by b do

fill phi(s)

pop out all values pushed into the stack in this call

Algorithm 8: Filling φ-nodes in store elimination

procedure rename(b)

if b ∈ phis then

push(value stack, phis(b))

foreach operation m in block b in reverse order do

if m is a store of r then

v = top(value stack)

if v 6= ⊥ then remove m

push(value stack, >)

else if m is a load of or may use r then

push(value stack, ⊥)

foreach s immediately post-dominated by b do

rename(s)

pop out all values pushed into the stack in this call

Algorithm 9: Renaming in store elimination

3.3. OPTIMISING BINARY TRANSLATION 41

Input: architectural register number r

phis = {}
worklist = {blocks containing accesses to (or may clobber) r}
while worklist 6= ∅ do

remove a block b from worklist

foreach post-dominance frontier f of b do

create a φ-node n for r, without adding to the graph

worklist ← worklist ∪ {f}
phis ← phis ∪ {f 7→ n}

value stack = {⊥}
foreach b immediate post-dominated by exit do fill phi(b)

repeat

replace all φ-nodes containing ⊥ with ⊥
until no changes are made

foreach b immediate post-dominated by exit do rename(b)

destroy all φ-nodes
Algorithm 10: Store elimination

3.3.7 Local Value Numbering

Hash-based local value numbering [11] is implemented to perform local common expression

elimination. Constant folding and arithmetic identity simplification are also performed.

Notable transformations made in local value numbering pass include:

• Multiple instances of arithmetic nodes with the same operands are replaced with

their first occurrence.

• Arithmetic nodes whose both operands are constant are evaluated and replaced with

constant.

• Casts followed by another cast are folded to a single cast or folded away if possible.

This is notable as the frontend will generate casts for instructions like addiw, relying

on this transformation to simplify the graph.

• Commutative arithmetic nodes are normalized so the constant operand is always

the second operand.

• Adding 0 is folded away. This simplifies the graph generated for mv.

• Subtracting a number from 0 is replaced with negation, and xor-ing with -1 is

replaced with bitwise not. This is important as RISC-V encodes negation/not as

subtract/xor.

• Anding with 0xFF is replaced with cast to i8, and left shifting 48 bits followed by

right shifting 48 bits is replaced with cast to i16. This optimisation is vital for code

quality as RISC-V does not provide 16-bit arithmetic directly but AMD64 does.

42 CHAPTER 3. IMPLEMENTATION

• mul and mulu nodes are merged if higher bits of the product of one of such node is

unused.

3.3.8 Basic Block Ordering

Before generating code, the graph-based IR needs to be converted into a linear list of

instructions. In this project this is done in two steps: basic blocks are ordered into a

linear list, then other nodes are scheduled into basic blocks.

When ordering basic blocks, the following properties are desired:

• the successor of entry node is ordered as the first block;

• dominators of a block are ordered before the block.

The second property is essential to guarantee that when instructions are scheduled into

basic blocks, definitions will always appear before usages. A simple pre-order depth-first

search would produce an ordering to satisfy both of these properties.

In addition, we also want to maximise the number of fall-throughs (i.e. minimise the

number of jump instructions needed). Formally speaking, for each ordering σ : Block→ N
and control flow edge a→ b, define penalty p as:

p(σ, a, b) =

{
0 if σ(b) = σ(a) + 1

1 otherwise

Define the total penalty as

p(σ) =
∑

all control flow edge a→b

p(σ, a, b)

The target is to find argmin
σ

p(σ). One way to explore the search space of σ is to start with

a guess (in this case the outcome of depth-first search) and try to swap pairs (without

violating the two properties) to see if the penalty decreases. However as the penalty is

not varying continuously, it is likely the algorithm will get stuck in plateaus. This project

uses distances between blocks to guide minimisation to smooth the penalty change.

distance(σ, a, b) =

{
σ(b)− σ(a)− 1 if σ(b) > σ(a)

σ(a)− σ(b) otherwise

p̃(σ, a, b) = p(σ, a, b) + distance(σ, a, b)

It is debatable whether the reordering is worthwhile. As the optimisation eliminates only

unconditional jumps, if the branch target buffer in modern CPUs hits then the number

of clock cycles saved by the optimisation is very limited.

3.3. OPTIMISING BINARY TRANSLATION 43

3.3.9 Code Motion/Scheduling

The next task is to assign each node into one of the basic blocks (except special ones

such as constant nodes). This step is necessary as the sea-of-nodes IR design permits

nodes to float around. The scheduling algorithm is inspired by HotSpot JVM’s approach

[19]. Conceptually the assignment takes place in two stages. The first stage identifies

the earliest legal block for each node and establishes a topological ordering of the nodes.

described by Algorithm 11.

visited ← {all constant nodes}
order ← empty list

foreach block b in topological order of dominator tree do

visited← visited ∪ {b and all associated φ-nodes}
repeat

foreach node n /∈ visited do

if depedencies of n ⊆ visited then

visited← visited ∪ {n}
early(n)← b

push back(order, n)

until no changes are made

Algorithm 11: Find the earliest legal block

The algorithm will produce a legal scheduling, though it is inefficient as ideally compu-

tations should be as close to their usages as possible. The second stage therefore tries to

schedule these nodes into later blocks using the order, described by Algorithm 12.

foreach block b do

let n be the ending node of b

late(n)← b

list(b)← empty list

foreach node n in reversed order do

t← ⊥
foreach node r that references n do

if r is not φ-node then

// assert that late(r) is already assigned

t← lease common dominator of t and late(r)

else

let b be the block associated with n in φ-node r

t← lease common dominator of t and b

late(n)← t

push front(list(t))← n

Algorithm 12: Schedule nodes as late as possible

44 CHAPTER 3. IMPLEMENTATION

The assertion in the second stage is guaranteed by the particular ordering chosen in the

first stage. After the second stage, we have a linear list of all the blocks and a linear list of

instructions for each block, making it possible to proceed to register allocation and code

generation.

3.3.10 Backend

The backend consists of three parts, instruction selection, register allocation and code gen-

eration. Instruction selection happens before scheduling, and register allocation happens

after scheduling and before code generation.

The instruction selection for AMD64 is very simple, as there are AMD64 instructions

for all arithmetic node types in the IR. The only transformation made in the AMD64

instruction selector is to map a + b ∗ c + d to a lea node or an address node, if it is used

as a memory address.

A very simple register allocation algorithm is used. Registers are allocated when the

value is first encountered, and spilling will occur if none of the registers are free. New

“copy” nodes are inserted into the graph when values change location, e.g. spill, unspill

or moved to a different register. This allows each value to be associated with only a single

register/memory location, simplifying code generation.

The code generation is a simple linear scan over the ordered and scheduled IR, generating

assembly code using the allocated registers. The code generator also reorders φ-nodes

to preserve the semantics that all φ-nodes moves are simultaneous. The IR graph and

all intermediate analysis results will be discarded, and the output AMD64 code will be

cached and executed similar to the simple binary translator described in Section 3.2.

3.3.11 Chaining

In region formation we identified all blocks that set PC to a constant before jumping to

the exit. In cases where region formation does not eliminate this pattern completely or it

is freshly introduced by optimisations after region formation, it is desirable that the DBT

can generate

jmp translated_address

which has less overhead than returning control back to the binary translator’s main loop.

However as it is possible that the target is not yet translated, the DBT will instead

generate

.trampoline:

mov rax , .trampoline

ret

and when the target address is known, the trampoline will be replaced with a jump

directly to the translated address.

3.4. SUMMARY 45

3.3.12 Compilation Threshold

Compiling a region using the optimising DBT is slow. Therefore, if a block is executed

only a few times, it is not worthwhile to have that block compiled. To reduce worthless

compilations, I have introduced a tunable compilation threshold to guide the optimising

DBT, specified by a runtime flag --compile-threshold=<n>. A block will trigger region

formation and compilation only if the number of times it is executed exceeds the threshold,

otherwise it will be interpreted.

When running benchmarks, compilation time is only a negligible proportion of the overall

time, therefore I set the default compilation threshold to 0, i.e. all blocks are compiled

before execution.

3.4 Summary

I have demonstrated most techniques and algorithms that I have used when implement-

ing the three execution engines. A few novel approaches, including trap and exception

handling, are used in this project for better performance and maintainability. I have also

implemented a few well-known optimisations, with tweaks made to account for differences

in binary translation. This project also includes a huge amount of boilerplate code for

decoding and encoding RISC-V and AMD64 assemblies, but these code pieces are not

described in this chapter for their lack of technicality and novelty. Directory structures

and lines of code are available in Appendix A.

46 CHAPTER 3. IMPLEMENTATION

Chapter 4

Evaluation

This chapter evaluates the project to determine whether the success criteria was met.

The evaluation is split into four aspects: correctness, performance, tuning of parameters

and analysis of overhead. The functional goal of the original success criteria focuses on

producing a working emulator, which is evaluated in the correctness section. The perfor-

mance section illustrates how this project met and surpassed the original non-functional

goal. The final two section explains how default runtime parameters are selected, and

how the selection of parameters influences compilation overhead.

4.1 Correctness

It is vital that the emulator developed in this project can execute RISC-V programs

correctly. A number of techniques are used to test the correctness, and together they

provide a broad coverage of the codebase.

4.1.1 RISC-V ISA Tests

A userspace port [21] of the official RISC-V ISA unit tests that was originally intended to

test the QEMU port is used to test ISA correctness. It contains hardcoded test cases for

most instructions available in the instruction set. I added a test case to cover the fence.i

instruction, which is used to flush the instruction cache to support self-modifying code.

All three execution engines, interpreter, simple DBT and optimising DBT, passed all test

cases.

4.1.2 Testing Floating Point Arithmetic

Floating point arithmetic may contain more edge cases than integer instructions, so I

decided that the available tests in the unit test suite were insufficient to guarantee the

correctness of the software floating point library implemented with the project. I therefore

47

48 CHAPTER 4. EVALUATION

ported the Berkeley TestFloat [17] suite to perform additional tests on the floating point

arithmetic. Berkeley TestFloat can generate randomized test samples that can test all

common cases along with known edge cases. Both double precision and single precision

floating point arithmetic implemented in this project passed all test cases generated by

Berkeley TestFloat.

4.1.3 Benchmark Suites

Correctness was also tested by letting the project execute several real-world applications,

checking whether the output was as expected. I was able to compile and run Dhrystone,

CoreMark and SPECint benchmarks in all three execution engines without errors. All

execution engines passed CoreMark’s built-in checksum check. In SPECint runs, the

output of execution was compared with the expected result distributed with the test suites.

All benchmarks produced exactly the same output, except for 464.h264ref. Inspecting

the output of 464.h264ref indicates that the output differs from the expected result only

by least significant bits, and QEMU’s execution output matches the output of this project,

so I believe the difference might be attributable to precision differences in floating point

units, as AMD64 internally has 80-bit precision where this project has 64-bit precision

only. As the output matches QEMU’s output, I decided that the mismatch could be

ignored. For SPECint benchmarks, both statically-linked and dynamically-linked binaries

were tested and they produced identical output.

4.1.4 Cross-validation Between Execution Engines

All three execution engines in this project are implemented separately – they share a

very limited amount of code, namely decoding and non-integer instructions. As decoding

and floating-point were thoroughly tested via unit tests, it is unlikely that the same bug

will occur on all execution engines. Therefore another useful test is to check whether all

three execution engines’ behaviours are functionally equivalent. The execution engines

were instrumented so that they would print out execution traces with register contents,

and their outputs were then compared to see whether there were any differences. This

was performed on both Dhrystone and CoreMark binaries, and the output was exactly

the same for all three engines. Therefore it is reasonable to assert that the engines are

functionally equivalent.

Overall, passing all four mechanisms of validation, this project is considered able to run

unmodified single-threaded RISC-V Linux binaries that use only common system calls.

Therefore the success criteria has been met.

4.2. PERFORMANCE 49

4.2 Performance

The goal of the project was to develop a fast binary translator, so performance is the most

important metric to measure the success of this project. All performance evaluations were

performed on a workstation with two AMD OpteronTM Processor 6376 (2x16x2.3GHz

cores), 128GiB of RAM, running Ubuntu 16.04.4 LTS. The workstation was shared with

one other user, however given abundant resources available on the machine, interference

should have been negligible. All RISC-V binaries were compiled with GCC 7.2.0.

4.2.1 Dhrystone and CoreMark

Dhrystone and CoreMark are simple benchmarks that can be run in a relative short time

and are fair indicators of performance. Their simplicity allowed them to be used to guide

the design directions of this project, because experimenting using larger benchmarks for

each design decision would have been intractable.

I ran both benchmarks 10 times for each implementation. Dhrystone ran for 10000000

passes (the default), and the Dhrystone’s DMIPS (Dhrystone MIPS) was recorded. Core-

Mark ran using seed 0,0,0x66 (the default) and 100000 iterations, and the number of

iterations per second was recorded. I decided not to let CoreMark decide the number of

iterations dynamically to reduce the number of variables and therefore reduce variance.

Tested emulators include spike, QEMU, rv8 and all three execution engines implemented

in this project. Native performance is also included for intuition about performance.

Note that as spike simulates an internal wallclock and does not use the actual wallclock,

gettimeofday does not produce correct result. Its performance was therefore estimated

using the overall execution time instead of benchmarks’ self-reported results. The setup

and clean-up time for spike was estimated and removed from the execution time before

calculation.

Figure 4.1 shows the 95% confidence interval of DMIPS. The confidence interval is calcu-

lated using Student’s t-distribution with degree of freedom of 9, therefore is

x̄± 2.262× s√
10

where x̄ is the sample mean and s the sample standard deviation. To assert an emulator

performs better than another, confidence intervals must not overlap, or two-sample one-

tailed t-test should be used. In this case, non-overlapping confidence intervals in the chart

suggest that the optimising DBT beats all other emulators significantly. It achieves 29.7x

speedup relative to spike and 8.75x speedup relative to QEMU in Dhrystone.

Figure 4.2 shows the 95% confidence interval for CoreMark. The chart shows that the

optimising DBT outperforms all other emulators. It achieves 16.4x speedup relative to

spike and 2.39x speedup relative to QEMU in CoreMark.

50 CHAPTER 4. EVALUATION

 0 5000 10000 15000 20000 25000

Native

Spike

QEMU

rv8

Interpreter

Simple DBT

Optimising DBT

Figure 4.1: Dhrystone performance in DMIPS

0 2000 4000 6000 8000 10000 12000

Native

Spike

QEMU

rv8

Interpreter

Simple DBT

Optimising DBT

Figure 4.2: CoreMark performance in iterations per second

4.2.2 SPECint

Both Dhrystone and CoreMark are synthetic benchmarks, meaning they cannot reflect

the performance in real-life situations. Therefore I picked SPECint to be the main metric

for the performance evaluation, which is a compilation of practical applications that test

integer performance exclusively. Benchmarks include a compiler, word processor, scientific

computing application, etc.

The benchmark run uses SPEC CPU 2006’s reportable configuration and with only “base”

metric. Reportable configurations enforce that each benchmark is run on a large dataset

4.3. TUNING REGION SIZE LIMIT 51

three times [13]. Execution time was recorded, and median was used for each benchmark

item. SPEC uses a reference machine, Sun’s Ultra Entriprise 2 produced in 1997, to

normalize the performance metrics. The normalised score for each benchmark item is the

ratio between the execution time and the execution time on the reference machine. The

overall score is the geometric average of individual benchmark scores.

SPECint was ran once natively, once using QEMU, and once using this project’s optimis-

ing DBT engine. rv8 is not compared, as it failed to execute most of benchmarks. spike

is not compared as it is too slow and would require days to finish one iteration.

Figure 4.3 and Figure 4.4 show the comparison between runs for each individual bench-

mark, in relative to the reference machine and native performance. The vertical lines

denote the final score (geometric mean) achieved by each run. For consistency with

SPECint’s convention, error bars are not displayed. Numeric scores can be found in

Appendix D.

NativeQEMU This Project

0 5 10 15 20 25 30

483.xalancbmk

473.astar

471.omnetpp

464.h264ref

462.libquantum

458.sjeng

456.hmmer

445.gobmk

429.mcf

403.gcc

401.bzip2

400.perlbench Native
QEMU
This Project

Figure 4.3: SPECint scores relative to the reference machine

Comparing the scores suggests that QEMU obtains 12.4% of native performance, while

this project obtains 30.8% of native performance. Setting QEMU as the baseline, this

project outperforms QEMU on every single benchmark, and an overall speedup of 2.49x

is achieved.

4.3 Tuning Region Size Limit

One important tunable parameter in the optimising binary translator is the region size

limit, mentioned in Section 3.3.3. If the limit is too small, then only a few blocks will

52 CHAPTER 4. EVALUATION

Ref QEMU This Project

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

483.xalancbmk

473.astar

471.omnetpp

464.h264ref

462.libquantum

458.sjeng

456.hmmer

445.gobmk

429.mcf

403.gcc

401.bzip2

400.perlbench Reference
QEMU
This Project

Figure 4.4: SPECint scores relative to the native performance

be included in the region, so transformations and optimisations that can be applied to

the region will be limited. An extreme case is when the region size limit is 1, in which

case the global load/store elimination is effectively a no-op, so performance will be poor.

If the limit is too large, then the program will end up spending a lot of time processing

blocks that may never be executed. An extreme case is when the region size limit is

∞, in which case all reachable blocks will be added to the region, causing a significant

increase in compilation time and memory usage. It is necessary to find a trade-off limit

that balances the compilation time and performance.

I decided to find the ideal region size limit experimentally. For each region size limit, I ran

CoreMark 3 times with both the compilation time and the execution time recorded. The

execution time can be calculated by subtracting the compilation time from the overall

runtime.

It can be observed from Figure 4.5 that the execution time reduces when the region size

limit increases. The reduction is very significant when the region size limit ≤ 8, then

marginal improvement diminishes when the region size increases beyond 8. It is expected

that when region size limit continues to increase, the execution time will continue to drop

until convergence.

Figure 4.6 shows that the compilation time increases when the region size limit increases.

To choose a default region size limit requires balancing compilation time and execution

time. 16 is chosen to be the default value, as beyond 16 the benefit of decreasing execution

time can be outweighed by increasing compilation time.

4.4. ANALYSIS OF COMPILATION OVERHEAD 53

0 4 8 12 16 20 24 28 32
Region Size Limit (blocks)

0

5

10

15

20

25

30

35

40

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Figure 4.5: Execution time versus region size limit

0 4 8 12 16 20 24 28 32
Region Size Limit (blocks)

0

0.1

0.2

0.3

0.4

0.5

C
om

pi
la

tio
n

T
im

e
(s

ec
on

ds
)

Figure 4.6: Compilation time versus region size limit

4.4 Analysis of Compilation Overhead

Though compilation time is negligible in benchmarking, it is nevertheless interesting to

understand why it varies in the pattern shown in Figure 4.6. Therefore, I modified the

binary translator to generate compilation statistics, seeking for explanations about the

increase in compilation time when the region limit increases.

From Figure 4.7, the average region size (number of blocks per region) increases when

region size limit increases. Figure 4.8 suggest that the reduction in the number of regions

is much slower than the growth of region size, therefore leading to an overall increase in

54 CHAPTER 4. EVALUATION

0 4 8 12 16 20 24 28 32

Region Size Limit (blocks)

0

2

4

6

8

10

12

14

16

A
ve

ra
ge

 R
eg

io
n

Si
ze

 (
bl

oc
ks

)

Figure 4.7: Average region size versus region size limit

0 4 8 12 16 20 24 28 32

Region Size Limit (blocks)

0

200

400

600

800

1000

1200

1400

N
um

be
r

of
 R

eg
io

ns

Figure 4.8: Number of regions compiled versus region size limit

the number of blocks compiled. Comparing Figure 4.9 and 4.6 shows a strong correlation

between the total number of all blocks compiled and the compilation time.

The increase in the total number of blocks compiled can be explained by two factors. First,

raising the region size limit will result in more blocks that are not actually executed being

compiled. When the region size is 1, only executed blocks are fetched and translated.

From Figure 4.10 it is clear that an increase in the region size limit leads to an increase in

the number of unique blocks translated, indicating more blocks are translated but never

executed.

Secondly, each block can be translated more than once. As regions are not mutually

4.4. ANALYSIS OF COMPILATION OVERHEAD 55

0 4 8 12 16 20 24 28 32

Region Size Limit (blocks)

0

1000

2000

3000

4000

5000
T

ot
al

 N
um

be
r

of
 B

lo
ck

s
C

om
pi

le
d

Figure 4.9: Total number of blocks compiled versus region size limit

0 4 8 12 16 20 24 28 32

Region Size Limit (blocks)

0

500

1000

1500

2000

N
um

be
r

of
 U

ni
qu

e
B

lo
ck

s
C

om
pi

le
d

Figure 4.10: Number of unique blocks compiled versus region size limit

exclusive with each other, it is very likely that a block might be reachable from multiple

paths. Therefore a block may belong to multiple regions. As each region is separately

compiled and optimised, appearances in different regions must be separately translated

and compiled, therefore the total number of blocks increases. Figure 4.11 shows that most

blocks are compiled only once, but some blocks are compiled multiple times. When the

number of times they are compiled is accounted for, their contribution towards the total

number of blocks compiled can be visualised via Figure 4.12. Even a small number of

blocks getting translated multiple times can significantly increase the average shown in

Figure 4.13.

56 CHAPTER 4. EVALUATION

0 5 10 15 20 25 30 35

Number of Affiliated Regions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pe
rc

en
ta

ge
 o

f
U

ni
qu

e
B

lo
ck

s
C

om
pi

le
d

Figure 4.11: Distribution of number of affiliated regions regarding unique blocks, with

region size limit 16

0 5 10 15 20 25 30 35

Number of Affiliated Regions

0

0.05

0.1

0.15

0.2

0.25

0.3

Pe
rc

en
ta

ge
 o

f
T

ot
al

 B
lo

ck
s

C
om

pi
le

d

Figure 4.12: Distribution of number of affiliated regions regarding all blocks, with region

size limit 16

The effect of the first factor can be possibly suppressed by utilising profile-based compi-

lation, only adding blocks on the most probable path to the region. Profile-based com-

pilation is listed as a possible extension but is not implemented due to time constraints.

The second factor is harder to mitigate as optimisations will prevent previously translated

blocks from being re-used.

4.5. SUMMARY 57

0 4 8 12 16 20 24 28 32

Region Size Limit (blocks)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
A

ve
ra

ge
 N

um
be

r
of

 A
ff

ili
at

ed
 R

eg
io

ns

Figure 4.13: Average number of affiliated regions per block versus region size limit

4.5 Summary

Through various tests and benchmarks, I have demonstrated that the project has met its

original success criteria, and significantly surpassed the original performance goals. I have

also demonstrated how I tuned the default region size limit, mentioning a few interesting

observations and trying to explain the underlying reasons behind the observations.

58 CHAPTER 4. EVALUATION

Chapter 5

Conclusion

The dissertation has described the planning, design, implementation and evaluation of a

binary translator from RISC-V to AMD64. The emulator delivered surpassed the pre-set

goal, outperforming all competing emulators. This project also shows that applying tra-

ditional compiler techniques in binary translators is not only viable, but also worthwhile.

5.1 Achievements

The initial functional project goal was met. The extension to make the emulator support

dynamically linked binaries was implemented. The final emulator is able to execute

unmodified single-threaded 64-bit RISC-V Linux binaries that use a selected subset of

system calls. The binary compatibility of the emulator produced is of a comparable level

with QEMU, much better than another fast binary translator rv8.

The project has also greatly exceeded the initial performance goal. Significant speedup is

achieved compared to spike, with a 30.5x speedup in Dhrystone and 18.0x in CoreMark.

During the evaluation the comparison baseline was therefore revised to be QEMU, which is

much faster than spike. Even with the new baseline, this project achieves 9.06x speedup

in Dhrystone, 2.60x in CoreMark, and 2.49x in SPECint.

5.2 Further Directions

There are a number of ways that could potentially improve this project but are not

implemented due to project time and complexity constraints.

• A proper global register allocation could be implemented to replace the current

näıve first-come-first-serve register allocator.

• Load and store elimination could also perform partial redundancy elimination.

59

60 CHAPTER 5. CONCLUSION

• Store eliminations could be modified to not rely on the assumption that memory

operations do not fault, but instead can use exception landing pads to fix register

states properly.

• Trace or profile-based optimisations can be used. For example, region formation

can use the frequency information to select the block to add, and compilation can

be triggered only on hot paths to reduce compilation overhead.

• More frontends and backends can be implemented. The IR-based approach should

allow the project to be ported easily.

Bibliography

[1] IEEE Standards Interpretations for IEEE Standard Portable Operating System In-

terface for Computer Environments. IEEE Std 1003.1-1988/INT, 1992 Edition, 1992.

[2] Itanium C++ ABI: Exception Handling. https://itanium-cxx-abi.github.io/

cxx-abi/abi-eh.html, 2005.

[3] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, Aug 2008.

[4] Krste Asanović and David A Patterson. Instruction sets should be free: The case

for RISC-V. EECS Department, University of California, Berkeley, Tech. Rep.

UCB/EECS-2014-146, 2014.

[5] Fabrice Bellard. QEMU: the FAST! processor emulator. https://www.qemu.org/,

2005.

[6] Matthias Braun, Sebastian Buchwald, and Andreas Zwinkau. FIRM-A graph-based

intermediate representation. KIT, Fakultät für Informatik, 2011.

[7] Michael Clark. rv8: RISC-V simulator for x86-64. https://rv8.io/, 2017.

[8] Cliff Click and Michael Paleczny. A simple graph-based intermediate representation.

ACM Sigplan Notices, 30(3):35–49, 1995.

[9] DWARF Standards Committee. DWARF version 5 debugging format standard.

http://dwarfstd.org/, 2017.

[10] Tool Interface Standards Committee et al. Executable and Linkable Format (ELF).

Specification, Unix System Laboratories, 1(1):1–20, 2001.

[11] Keith Cooper and Linda Torczon. Engineering a compiler. Elsevier, 2011.

[12] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Developer’s Manual.

Volume 2: Instruction set reference, 2016.

[13] Standard Performance Evaluation Corporation. SPEC CPU 2006 Documentation.

https://www.spec.org/cpu2006/Docs/.

[14] David Drysdale. How programs get run: ELF binaries. https://lwn.net/Articles/

631631/, 2015.

[15] Free Software Foundation. Using the GNU Compiler Collection (GCC): Code Gen

Options. https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html, 2018.

61

https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html
https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html
https://www.qemu.org/
https://rv8.io/
http://dwarfstd.org/
https://www.spec.org/cpu2006/Docs/
https://lwn.net/Articles/631631/
https://lwn.net/Articles/631631/
https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html

62 BIBLIOGRAPHY

[16] RISC-V Foundation. RISC-V ISA. https://riscv.org/risc-v-isa/, 2017.

[17] John Hauser. Berkeley TestFloat. http://www.jhauser.us/arithmetic/

TestFloat.html, 2017.

[18] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding domina-

tors in a flowgraph. ACM Transactions on Programming Languages and Systems

(TOPLAS), 1(1):121–141, 1979.

[19] Michael Paleczny, Christopher Vick, and Cliff Click. The Java HotSpotTMserver com-

piler. In Proceedings of the 2001 Symposium on Java TM Virtual Machine Research

and Technology Symposium-Volume 1, pages 1–1. USENIX Association, 2001.

[20] Martin Richards. The Lengauer Tarjan algorithm for computing the immediate dom-

inator tree of a flowgraph. http://www.cl.cam.ac.uk/~mr10/lengtarj.pdf, 2017.

[21] Alex Suykov. riscv-qemu-tests. https://github.com/arsv/riscv-qemu-tests,

2016.

[22] Andrew Waterman and Yunsup Lee. RISC-V ISA Simulator. https://github.com/

riscv/riscv-isa-sim, 2011.

[23] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovi. The RISC-

V Instruction Set Manual. Volume 1: User-Level ISA, Version 2.2. https://riscv.

org/specifications/, 2017.

https://riscv.org/risc-v-isa/
http://www.jhauser.us/arithmetic/TestFloat.html
http://www.jhauser.us/arithmetic/TestFloat.html
http://www.cl.cam.ac.uk/~mr10/lengtarj.pdf
https://github.com/arsv/riscv-qemu-tests
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim
https://riscv.org/specifications/
https://riscv.org/specifications/

Appendix A

Source Directory Tree

This project consists of about 17400 line of codes (LoC), spread across 87 files. The

directory tree of the source directory is shown below, along with lines of code associated

with each file/directory.

/ (17400 LoC)

• include (5131 LoC)

– emu (247 LoC)

∗ mmu.h (54 LoC)

∗ state.h (79 LoC)

∗ typedef.h (14 LoC)

∗ unwind.h (100 LoC)

– ir (832 LoC)

∗ analysis.h (177 LoC)

∗ builder.h (89 LoC)

∗ node.h (420 LoC)

∗ pass.h (61 LoC)

∗ visit.h (85 LoC)

– main (141 LoC)

∗ dbt.h (45 LoC)

∗ executor.h (10 LoC)

∗ interpreter.h (26 LoC)

∗ ir dbt.h (46 LoC)

∗ signal.h (14 LoC)

63

64 APPENDIX A. SOURCE DIRECTORY TREE

– riscv (984 LoC)

∗ abi.h (497 LoC)

∗ basic block.h (27 LoC)

∗ context.h (32 LoC)

∗ csr.h (24 LoC)

∗ decoder.h (34 LoC)

∗ disassembler.h (25 LoC)

∗ frontend.h (15 LoC)

∗ instruction.h (90 LoC)

∗ opcode.h (223 LoC)

∗ typedef.h (17 LoC)

– softfp (1244 LoC)

∗ float.h (1244 LoC)

– util (1012 LoC)

∗ assert.h (72 LoC)

∗ bit op.h (70 LoC)

∗ bitfield.h (82 LoC)

∗ code buffer.h (48 LoC)

∗ format.h (78 LoC)

∗ functional.h (30 LoC)

∗ int128.h (62 LoC)

∗ int size.h (39 LoC)

∗ macro.h (11 LoC)

∗ memory.h (26 LoC)

∗ multiset.h (79 LoC)

∗ reverse iterable.h (29 LoC)

∗ safe memory.h (21 LoC)

∗ scope exit.h (43 LoC)

∗ select int.h (83 LoC)

∗ small vector.h (239 LoC)

65

– x86 (660 LoC)

∗ backend.h (162 LoC)

∗ builder.h (206 LoC)

∗ decoder.h (35 LoC)

∗ disassembler.h (22 LoC)

∗ encoder.h (60 LoC)

∗ instruction.h (104 LoC)

∗ opcode.h (71 LoC)

– config.h (11 LoC)

• src (12047 LoC)

– emu (1129 LoC)

∗ elf loader.cc (278 LoC)

∗ mmu.cc (43 LoC)

∗ state.cc (33 LoC)

∗ syscall.cc (775 LoC)

– ir (2448 LoC)

∗ block analysis.cc (252 LoC)

∗ dominance.cc (308 LoC)

∗ dot printer.cc (221 LoC)

∗ load store elimination.cc (517 LoC)

∗ local load store elimination.cc (74 LoC)

∗ local value numbering.cc (588 LoC)

∗ lowering.cc (74 LoC)

∗ node.cc (208 LoC)

∗ scheduler.cc (182 LoC)

∗ visit.cc (24 LoC)

– main (2484 LoC)

∗ dbt.cc (1700 LoC)

∗ interpreter.cc (62 LoC)

∗ ir dbt.cc (361 LoC)

66 APPENDIX A. SOURCE DIRECTORY TREE

∗ main.cc (246 LoC)

∗ signal.cc (115 LoC)

– riscv (3002 LoC)

∗ decoder.cc (1093 LoC)

∗ disassembler.cc (454 LoC)

∗ frontend.cc (414 LoC)

∗ step.cc (1041 LoC)

– softfp (11 LoC)

∗ float.cc (11 LoC)

– util (260 LoC)

∗ assert.cc (9 LoC)

∗ code buffer.cc (37 LoC)

∗ format.cc (165 LoC)

∗ safe memory.cc (49 LoC)

– x86 (2679 LoC)

∗ code generator.cc (647 LoC)

∗ decoder.cc (156 LoC)

∗ disassembler.cc (219 LoC)

∗ encoder.cc (804 LoC)

∗ lowering.cc (152 LoC)

∗ register allocator.cc (701 LoC)

– feature.cc (34 LoC)

• visualizer (131 LoC)

– generate.js (29 LoC)

– template.html (102 LoC)

• Makefile (91 LoC)

Appendix B

Sample Code

B.1 Trap Handling

As mentioned in Section 3.1.2, traps are turned into exceptions. This is achieved by the

following code:

void handle_fault(int sig) {

ASSERT(sig == SIGSEGV || seg == SIGBUS);

sigset_t x;

sigemptyset (&x);

sigaddset (&x, sig);

sigprocmask(SIG_UNBLOCK , &x, nullptr);

throw Segv_exception {sig};

}

void setup_fault_handler () {

struct sigaction act;

memset (&act , 0, sizeof(act));

act.sa_handler = handle_fault;

sigaction(SIGSEGV , &act , NULL);

sigaction(SIGBUS , &act , NULL);

}

Listing B.1: Trap handling in main/signal.cc

The following code is (the only code) compiled with -fnon-call-exceptions, and is

referenced by other parts of the project when guest memory needs to be accessed.

template <typename T>

T safe_read(void* pointer) {

T ret;

memcpy (&ret , pointer , sizeof(T));

return ret;

67

68 APPENDIX B. SAMPLE CODE

}

template <typename T>

void safe_write(void *pointer , T value) {

memcpy(pointer , &value , sizeof(T));

}

void safe_memcpy(void *dst , const void *src , size_t n) {

std::byte *c_dst = reinterpret_cast <std::byte*>(dst);

const std::byte *c_src = reinterpret_cast <const std::byte*>(

src);

for (size_t i = 0; i < n; i++, c_dst++, c_src ++) {

*c_dst = *c_src;

}

}

void safe_memset(void *memory , int byte , size_t size) {

unsigned char data = static_cast <unsigned char >(byte);

unsigned char* pointer = reinterpret_cast <unsigned char*>(

memory);

for (unsigned char* end = pointer + size; pointer < end;

pointer ++) {

*pointer = data;

}

}

template uint8_t safe_read <uint8_t >(void*);

template uint16_t safe_read <uint16_t >(void*);

template uint32_t safe_read <uint32_t >(void*);

template uint64_t safe_read <uint64_t >(void*);

template void safe_write <uint8_t >(void*, uint8_t);

template void safe_write <uint16_t >(void*, uint16_t);

template void safe_write <uint32_t >(void*, uint32_t);

template void safe_write <uint64_t >(void*, uint64_t);

Listing B.2: Excerpt from util/safe memory.cc

B.2 Environment Emulation

As mentioned in Section 3.1.3, brk is entirely emulated. The emulation code for brk is

attached below.

if (arg0 < state:: original_brk) {

// Cannot reduce beyond original_brk

} else if (arg0 <= state :: heap_end) {

if (arg0 > state ::brk) {

B.3. EXCEPTION HANDLING FRAMES 69

zero_memory(state ::brk , arg0 - state ::brk);

}

state::brk = arg0;

} else {

reg_t new_heap_end = std::max(state ::heap_start , (arg0 +

page_mask) &~ page_mask);

// The heap needs to be expanded

reg_t addr = guest_mmap(

state::heap_end , new_heap_end - state ::heap_end ,

PROT_READ | PROT_WRITE , MAP_PRIVATE | MAP_ANON , -1, 0

);

if (addr != state:: heap_end) {

// We failed to expand the brk.

guest_munmap(addr , new_heap_end - state:: heap_end);

} else {

// Memory should be zeroed here as this is expected by

glibc.

zero_memory(state ::brk , state :: heap_end - state ::brk);

state:: heap_end = new_heap_end;

state::brk = arg0;

}

}

reg_t ret = state ::brk;

if (state:: strace) {

util::log("brk ({}) = {}\n", pointer(arg0), pointer(ret));

}

return ret;

Listing B.3: brk emulation in emu/syscall.cc

B.3 Exception Handling Frames

As mentioned in Section 3.2.2, a manually crafted exception handling frame template is

used. The listing below shows the template in a format used by objdump. The actual

template in the source code is encoded in binary.

00000000 000000000000001C 00000000 CIE

Version: 1

Augmentation: "zPL"

Code alignment factor: 1

Data alignment factor: -8

70 APPENDIX B. SAMPLE CODE

Return address column: 16

Augmentation data: 0a 00 $(8 byte address of personality)

00

DW_CFA_def_cfa: r7 (rp) ofs 8

DW_CFA_offset: r16 (rip) at cfa -8

00000020 0000000000000028 00000024 FDE cie =00000000 pc=$(address

of pc start)..$(address of pc end)

Augmentation data: 08 $(8 byte address of LSDA)

DW_CFA_advance_loc: 1

DW_CFA_def_cfa_offset: 16

DW_CFA_offset: r6 (rbp) at cfa -16

DW_CFA_def_cfa_offset: $(stack_size + 16)

DW_CFA_nop

DW_CFA_nop

DW_CFA_nop

Listing B.4: Exception handling frame template

Appendix C

Sample Output

The following C code is the function used to calculate Fibonacci numbers:

long fib(long v) {

if (v <= 1) return v;

long prev = 0, curr = 1;

for (long i = 2; i <= v; i++) {

long next = prev + curr;

prev = curr;

curr = next;

}

return curr;

}

Listing C.1: Fibonacci number calculation function fib

It produces the following RISC-V assembly code:

li a5 ,1

ble a0 ,a5 ,.2

addi a2 ,a0 ,1

li a4 ,2

li a3 ,0

.1:

add a0 ,a3 ,a5

addi a4 ,a4 ,1

mv a3,a5

mv a5,a0

bne a2 ,a4 ,.1

.2:

ret

Listing C.2: RISC-V assembly of fib

The optimising binary translator decodes the RISC-V binary and produces an optimised

IR graph shown in Figure 3.6. After register allocation and code generation, the following

71

72 APPENDIX C. SAMPLE OUTPUT

AMD64 assembly is produced.

push rbp

mov rbp , rdi

mov qword [rbp+0x78], 0x1

mov rax , qword [rbp+0x50]

cmp rax , 0x1

jle .2

mov rax , qword [rbp+0x50]

add rax , 0x1

mov qword [rbp+0x60], rax

mov qword [rbp+0x50], 0x1

mov qword [rbp+0x70], 0x3

mov qword [rbp+0x68], 0x1

mov qword [rbp+0x78], 0x1

cmp rax , 0x3

jz .2

mov rcx , rax

mov rdx , 0x1

mov rsi , 0x3

mov rax , 0x1

.1:

add rdx , rax

mov qword [rbp+0x50], rdx

add rsi , 0x1

mov qword [rbp+0x70], rsi

mov qword [rbp+0x68], rax

mov qword [rbp+0x78], rdx

cmp rcx , rsi

jz .2

xchg rax , rdx

jmp .1

.2:

mov rax , qword [rbp+0x8]

and rax , -0x2

mov qword [rbp+0x200], rax

pop rbp

xor eax , eax

ret

Listing C.3: AMD64 assembly generated for fib

Appendix D

SPECint Scores

The tables below show the recorded execution time and computed scores from each run.

The ratio is displayed to 3 significant places.

First Run Second Run Third Run Median

Benchmark Seconds Ratio Seconds Ratio Seconds Ratio Seconds Ratio

400.perlbench 489 20.0 481 20.3 491 19.9 489 20.0

401.bzip2 616 15.7 621 15.5 620 15.6 620 15.6

403.gcc 420 19.2 423 19.0 424 19.0 423 19.0

429.mcf 421 21.7 408 22.4 409 22.3 409 22.3

445.gobmk 636 16.5 637 16.5 633 16.6 636 16.5

456.hmmer 638 14.6 639 14.6 644 14.5 639 14.6

458.sjeng 750 16.1 746 16.2 749 16.2 749 16.2

462.libquantum 786 26.4 810 25.6 789 26.3 789 26.3

464.h264ref 961 23.0 981 22.6 964 23.0 964 23.0

471.omnetpp 400 15.6 418 15.0 401 15.6 401 15.6

473.astar 499 14.1 510 13.8 497 14.1 499 14.1

483.xalancbmk 345 20.0 352 19.6 353 19.3 352 19.6

Score 18.2

Table D.1: SPECint results of native run

73

74 APPENDIX D. SPECINT SCORES

First Run Second Run Third Run Median

Benchmark Seconds Ratio Seconds Ratio Seconds Ratio Seconds Ratio

400.perlbench 9652 1.01 10818 0.903 9958 0.981 9958 0.981

401.bzip2 3536 2.73 3379 2.86 3167 3.05 3379 2.86

403.gcc 5888 1.37 5449 1.48 5328 1.51 5449 1.48

429.mcf 994 9.17 937 9.74 924 9.87 937 9.74

445.gobmk 5454 1.92 5761 1.82 5306 1.98 5454 1.92

456.hmmer 3227 2.89 3419 2.73 3322 2.81 3322 2.81

458.sjeng 8701 1.39 8708 1.39 8345 1.45 8701 1.39

462.libquantum 1598 13.0 1707 12.1 1645 12.6 1645 12.6

464.h264ref 13737 1.61 12919 1.71 12248 1.81 12919 1.71

471.omnetpp 6196 1.01 6676 0.936 5998 1.04 6196 1.01

473.astar 2925 2.40 3131 2.24 3045 2.31 3045 2.31

483.xalancbmk 5782 1.19 6361 1.08 6018 1.15 6018 1.15

Score 2.26

Table D.2: SPECint results of QEMU

First Run Second Run Third Run Median

Benchmark Seconds Ratio Seconds Ratio Seconds Ratio Seconds Ratio

400.perlbench 2237 4.37 2254 4.34 2174 4.49 2237 4.37

401.bzip2 1588 6.08 1700 5.68 1751 5.51 1700 5.68

403.gcc 1698 4.74 1723 4.67 1765 4.56 1723 4.67

429.mcf 597 15.3 653 14.0 645 14.1 645 14.1

445.gobmk 2854 3.68 2969 3.53 2661 3.94 2854 3.68

456.hmmer 2351 3.97 2182 4.28 2122 4.40 2182 4.28

458.sjeng 3038 3.98 3063 3.95 2904 4.17 3038 3.98

462.libquantum 1235 16.8 1200 17.3 1249 16.6 1235 16.8

464.h264ref 3803 5.82 3966 5.58 3746 5.91 3803 5.82

471.omnetpp 1845 3.39 1887 3.31 1813 3.45 1845 3.39

473.astar 1079 6.50 1042 6.73 1077 6.52 1077 6.52

483.xalancbmk 1552 4.45 1542 4.47 1431 4.82 1542 4.47

Score 5.62

Table D.3: SPECint results of this project

Appendix E

Project Proposal

Computer Science Tripos – Part II – Project Proposal

Dynamic Binary Translator for RISC-V

Xuan Guo, Peterhouse

Originator: Xuan Guo

10 October 2017

Project Supervisor: Dr Timothy Jones

Director of Studies: Dr Robert Mullins

Project Overseers: Dr Sean Holden & Dr Neel Krishnaswami

Introduction

RISC-V is a recent innovation in general-purpose instruction set architecture (ISA). Orig-

inally designed to support computer architecture research and education, it was soon

embraced by the industry and eventually became an open architecture standard for use

of everyone. It is designed with modularity and simplicity in mind, and is designed to

serve all devices: ranging from embedded systems to datacenter-scale computers.

Even though RISC-V is open and embraced by the industry, it is still disadvantageous

compare to existing architectures, e.g. AMD64 or ARM in terms of ecosystems. Most

modern desktops and servers are powered by processors running AMD64 ISA, and these

systems cannot run RISC-V binaries natively. This essentially creates a barrier for devel-

oping for or porting software to RISC-V ISA. For the ecosystem to grow, there exists a

75

76 APPENDIX E. PROJECT PROPOSAL

need for a RISC-V emulator that has both good performance and interoperability with

existing environments.

This project aims to develop an emulator that is capable of running unmodified RISC-V

Linux binaries directly on an AMD64 Linux system, and it shall be utilizing dynamic

binary translation techniques to achieve better performance than simple interpreters.

Terminology

An emulator is a program that can run program compiled for a particular ISA. The

architecture emulated is called the guest architecture, and the architecture that an emu-

lator runs on is called the host architecture. An emulator can be further classified as an

interpreter or a binary translator.

An interpreter is an emulator that works by decoding and emulating instruction once

at a time.

A binary translator is an emulator that works by translating binaries from the guest

ISA to host ISA a block or multiple blocks at a time, and executing the translated binaries.

It can be further divided to static binary translator, which translates all code ahead-of-

time, or dynamic binary translator which translates code in runtime when the code

is actually used.

RISC-V is a modular ISA, divided into base integer ISA and optional extensions. At

the time of writing, stable base ISAs include RV32I and RV64I, which uses different

register widths, and stable standard extensions include M, A, F, D, C, which stand

for multiplication, atomic, floating-point, double precision floating-point and compressed

instruction extensions. IMAFD is collectively called G.

Starting point

I already have basic computer architecture knowledge from Part IB Computer Design

course, and basic compiler construction knowledge from Part IB Compiler Construction

course and my previous hobby projects. I consider myself experienced C++ user, as I

regularly use C++11 and above for my hobby projects.

The following projects are state-of-art RISC-V emulators that could serve as the basis of

comparison and evaluation:

• Currently a reference interpreter riscv-isa-sim is implemented by the RISC-V

Foundation. With various coding tricks applied, it is the fastest known interpreter.

• A QEMU port of RISC-V is also available, which utilizes dynamic binary translation,

and it is the fastest known emulator.

77

• rv8 is another RISC-V to AMD64 binary translator. However it is still immature

and under development.

The aim of this project is to implement binary translation, so starting from existing

binary translators is not considered. Also, tricks used in riscv-isa-sim make it hard

to perform large-scale changes such as implementing binary translation. Considering all

these factors, this project intends to start from scratch without extending from any of

existing codebases.

The RISC-V Foundation also ported toolchains to RISC-V, including binutils, gcc and

gdb. These tools will be used throughout the project, and they are helpful for generating

binaries for testing.

Resources required

This project requires no special resources. Any Linux environment on AMD64 will suf-

fice. For the sake of convenience, I shall mainly use my own laptop that runs Microsoft

Windows. Windows subsystem for Linux will be used as development and evaluation

environment. In case that it fails, I shall be using MCS Linux as the backup.

All documents, including source code and any paper work will be synchronized to

OneDrive for Business. Source code will in addition be version-controlled using git, and

backed up to a private GitHub repository.

Work to be done

The project is split into three implementation phases, each phase is ended with a mile-

stone. Evaluation should be constantly performed while implementing to determine the

standard conformance performance bottlenecks and hint optimisations directions. At the

end of phase 3, a systematic evaluation should be performed to compare performance

benchmarks in different configurations and against existing emulators.

Phase 1 – Interpreter

In the first phase, a basic interpreter will be implemented. Even though the project aims

to build a binary translator and targets better performance than simple interpreters,

building an interpreter first can serve as a basis to build the binary translator on.

The interpreter will accept a statically-linked RISC-V Linux binaries that use most fun-

damental system calls (e.g. fstat, open, read, write, brk, exit). Binaries will be compiled

targeting RV64GC (i.e. RV64I + MAFDC extensions). Decoder and disassembler will be

implemented as part of building an interpreter.

78 APPENDIX E. PROJECT PROPOSAL

Phase 2 – Basic Block Binary Translation

The next phase is building the binary translator. The binary translator needs only to

work on RV64IMC instructions, and instructions in AFD extensions can remain inter-

preted. The early stage of the binary translator will work on basic blocks, i.e. contiguous

instructions with no control flow changes. By building upon the interpreter, instructions

can be incrementally implemented by calling into the interpreter on un-implemented in-

structions. Register allocation and optimisations are not necessary at this stage, and all

emulated registers can be placed in heap or stack for the ease of implementation.

Phase 3 – Inter-block Binary Translation, Register Allocation,

Optimisations

The binary translator should be extended further so that nearby basic blocks can be

translated together, e.g. branch targets of the same if should be translated together for

better optimisation opportunities. Register allocations and local or global optimisations

techniques could then be applied to increase the performance. At the end of this phase,

the binary translator should be almost feature-complete.

Success criteria

The project will be a success if I have implemented a dynamic binary translator that

can run unmodified statically-linked, single-threaded RISC-V Linux binaries that uses

only common system calls. Ideally it would have better performance than the reference

interpreter implementation.

Possible extensions

If I achieve my main result early I shall try the following extensions:

1. Implement binary translation for RISC-V standard extension AFD. This is placed as

an extension since RISC-V and AMD64 have different memory models and floating-

point register models, and having these as the main goal is highly risky.

2. Implement parallel code generation. With optimisations added, code generation is

likely to be slow. Therefore, the task could be offloaded to a different thread, and

the main thread can either be operating in interpreter mode or run a less optimised

binary before the translation completes.

3. Implement dynamic profile-guided re-compilation. Hot code can be spotted via

tracing, and the code could be re-compiled by applying more optimisations to boost

79

performance. Some aggressive optimisations can also be made if de-optimisation is

implemented.

4. Implement signals, multi-threading, dynamic-linking and other system calls. This

depends on the A extension, so it will be blocked by extension 1.

5. Implement full system emulation in addition to user space emulation.

Timetable

Planned starting date is 22/10/2017.

1. Michaelmas weeks 3–4 Compile and get experience on RISC-V toolchains. Read

RISC-V specifications, books about optimising compilers and papers about binary

translation.

2. Michaelmas weeks 5–6 Implement RV64GC interpreter and necessary system

calls to run the benchmark binary.

3. Michaelmas weeks 7–8 Implement RV64IMC basic binary translator on basic

blocks, based on the interpreter.

4. Christmas vacation Start implementing binary translation across basic blocks.

Experiment on optimisation techniques.

5. Lent weeks 0–2 Write progress report. Continue working on optimisations.

6. Lent weeks 3–4 Evaluate the quality of generated code, run experiments in differ-

ent configurations and achieve main project goal.

7. Lent weeks 5–6 Write dissertation main chapters.

8. Lent weeks 7–8 Extensions.

9. Easter vacation Extensions and dissertation chapters about extensions.

10. Easter weeks 0–2 Further evaluation and complete dissertation.

11. Easter weeks 3 Proofreading and submission.

	Introduction
	Preparation
	RISC-V
	Binary Translation
	Existing Emulators
	Requirement Analysis
	Development Methodology
	Choice of Tools
	Programming Language
	Toolchain
	Test Suite
	Development Environment
	Backup and Version Control
	Related Courses

	Implementation
	Interpreter
	Software Floating-point Library
	Trap Handling
	Environment Emulation

	Simple Binary Translation
	Division Exception Handling
	Exception Handling Frames

	Optimising Binary Translation
	Intermediate Representation
	Frontend
	Region Formation
	Infinite Loop Handling
	Dominance Tree Computation
	Load and Store Elimination
	Local Value Numbering
	Basic Block Ordering
	Code Motion/Scheduling
	Backend
	Chaining
	Compilation Threshold

	Summary

	Evaluation
	Correctness
	RISC-V ISA Tests
	Testing Floating Point Arithmetic
	Benchmark Suites
	Cross-validation Between Execution Engines

	Performance
	Dhrystone and CoreMark
	SPECint

	Tuning Region Size Limit
	Analysis of Compilation Overhead
	Summary

	Conclusion
	Achievements
	Further Directions

	Bibliography
	Source Directory Tree
	Sample Code
	Trap Handling
	Environment Emulation
	Exception Handling Frames

	Sample Output
	SPECint Scores
	Project Proposal

